
	This	document	describes	the	steps	I	took	to	compile	Ctrlr	with	Visual	Studio	
2019	on	Windows	10.		

Disclaimer:	I’m	primarily	a	Mac/Apple	user,	so	I’m	probably	not	able	to	answer	
typical	technical	Windows/Visual	Studio	questions.	

Below	is	the	About	Ctrlr	window	of	the	compiled	version.	

The	publishing	date	of	this	version	is:	April	8,	2021	

My	version	of	Visual	Studio	2019	is:	16.9.4	and	I	installed	it	for	the following 
2 workloads:

• Universal Windows Platform development;

• Desktop development with C++.
I	did	use	Windows	10	Pro	English	running	virtual	on	my	iMac	with	VMWare	
Fusion.	I	did	use	a	fresh	(but rather old) installment	of Windows 10 and	before	
I	could	install	and	run	Visual Studio 19,		I	had	to	do	every	update	available	for	
Windows	10.	(My	copy	of	Windows	10	dates	back	from	August	2015	and	was	
originally	probable	too	old.)	

Download	the	Ctrlr	source	files	
The	first	thing	you	have	to	do	of	course	is	download	the	latest	master	from	the	
Ctrlr	Github. First step you have to after downloading is unzipping 'boost.zip' 
You will find this file in ..\ctrlr-master\Source\Misc\boost\. Just unzip it and do 
nothing further.

Run shell scripts when compiler complains about "final"
If the compiler complains you need to run shell scripts, otherwise you're lucky 
and may skip this part and continue with the section Using the Projucer app!I 
refer to	this	comment	of	Roman	Kubiak.	This	means	that	part	of	compiling	Ctrlr	
is	first	running	so	called	shell	scripts	(files	with	extension	.sh).	These	scripts	
only	run	in	a	Unix	–like	environment	and	from	the	terminal.	Cygwin64	does	
provide	this	functionality	for	Windows,	so	first	thing	I	had	to	do	was	installing	
Cygwin64.	In	the	Ctrlr	folder	I	found	2	.sh	files.	I	decided	to	run	both,	because	
both	seem	to	address	the	“final”	issue.	

https://github.com/RomanKubiak/ctrlr
https://github.com/RomanKubiak/ctrlr/commit/c1f67d2f4033cb9f5dd20a123854fcddcd99b81d
https://cygwin.com


Running	the	shell	scripts	
Open	Cygwin64	Terminal.	Type	‘cd’	(without	the	quotes)	and	drag	your	Ctrlr	
folder	into	the	terminal	window	and	hit	ENTER.	This	way	you	set	the	terminal	to	
the	Ctrlr	directory.	Next	type	‘bash’,	again	without	the	quotes,	and	drag	the	script	
file	‘remove_finals_from_JUCE.sh	(located	in	the	scripts	folder)	into	the	terminal	
window	and	hit	ENTER.	A	long	list	of	files	scrolls	by.	The	window	looks	like	this:	

Do	the	same	with	the	script	file	‘remove_final.sh	found	in	the	JUCE	directory.	I’m	
not	sure	if	this	is	really	needed,	but	it	seemed	not	doing	any	harm.	

Using the Projucer	app	
Projucer	is	needed	as	an	intermediate	step	to	load	the	Ctrlr	project	properly 
into Visual	Studio. So	after	you	have	downloaded and installed	JUCE	go	to	the 
JUCE	folder, where	you’ll	find	Projucer.exe.	Start	the	program.	

Building	Ctrlr	
Before you export to Visual Studio make sure you set the right global paths. 
Path to JUCE is the path to the Juce folder in your ctrlr-master folder. Path to 
JUCE Modules is the path to the modules folder inside the Juce folder of the 
ctrlr-master folder.



Now choose	File>Open…	and	pick	the	file:		\ctrlr-master\Ctrlr.jucer.	This	file	
contains	all	the	(source)	files	you	need	to	build	Ctrlr.	Click	on	the	export	button	
of	Projucer.	Visual	Studio	will	start	and	the	Ctrlr	project	is	loaded.	

Building	the	Ctrlr_SharedCode	
First	step	in	building	is	to	build	the	Ctrlr_SharedCode.	Before	you	can	do	the	
actual	building	you	have	to	adjust	some	settings	in	Visual	Studio.	The	first	one	is	
the	set	the	‘Preferred	Build	Tool	Architecture’	to	64-bit	(x64).

Choose option 'Properties' and	in	the	Properties	window	choose	
Advanced	and	set	the	architecture:	

The	second	setting	has	to	do	with	the	so	called	C/C++	Output	File.	Before	you	set	
this,	make	sure	you	have	selected	the	Ctrlr_SharedCode	item	in	the	‘Solution	
Explorer’	side	pane,	because	the	setting	will	affect	this	item.



Solution Explorer ,,. q. X

T 

(9 ,.. 

Search Solution Explorer (Ctrl+;) 

t;'j Solution 'Ctrlr' (4 of 4 projects) 

► � Ctrlr_SharedCode

� � Ctrlr_StandalonePlugin 

� � Ctrlr_ VST 

� � Ctrlr_ VST3 

Now	go	again	to	Project>Properties	(the	same	menu	option	when	setting	
the	Build	Architecture,	see	above)	and	choose	C/C++>	Output	
Files>Program	Database	file	Name,	and	choose	(or	in	case	of	not	showing	the	
text,	type):	
<inherit	from	parent	or	project	defaults>	

This	has	to	be	done	because	of	the	problem discussed	here.	Click	OK	and	set 
the build to Release and x64, you may choose otherwise: 

Next	start	the	actual	building:	

SWB
Highlight

SWB
Highlight

SWB
Highlight

https://forum.juce.com/t/ms-visual-studio-16-9-4-compile-failed-after-vs-update/45555/5


After	a	few	minutes	and	many	warnings,	mostly	of	type	C4459,	if	all	is	well	the	
build	succeeds.	Next	task	is	building	the	Ctrlr_StandalonePlugin	project.	

Building	Ctrlr_StandalonePlugin	
In	fact	the	procedure	for	building	this	plugin	is	pretty	much	the	same	as	for	the	
Ctrlr_SharedCode	project.	First	you	select	in	the	‘Solution	Explorer’	the	
Ctrlr_StandalonePlugin	item	and	then	make	sure	that	firstly	the	Preferred	Build	
Tool	Architecture	is	set	to	64-bit	(x64)	as	explained	in	the	build	for	
Ctrlr_SharedCode	section	above	and	secondly	the	Program	Database	File	Name	
for	the	C/C++	Output	File	is	set	to	<inherit	from	parent	or	project	defaults>	
After	this	settings	you	can	build	the	plugin,	which	takes	a	rather	long	time,	so	be	
patient.	If	again	all	is	well,	the	build	succeeds.	You	will	find	the	generated	Ctrlr-
x64.exe	in:		
..\ctrlr-master\Builds\VisualStudio2019\x64\Release\Standalone	Plugin\	

So this is the build for CTRLR 64-bit. Building for 32-bit does succeed only in 
Debug mode, but this build gives problems when running on a computer without 
Visual Studio installed or the proper redistributable 'VC_redist.x86' for the 32-bit 
architecture installed. (See my post further down in this thread about running 
the application without an installment of Visual Studio.)

About	this	build	
I	did	test	the	application	on	my	laptop with Windows 7, using a simple USB MIDI 
interface. The interface was connected to my Kurzweil K2500R. The panel for this 
instrument loaded OK and the K2500R responded as expected to the various 
sysex messages send from this panel. I will test this build further and keep you of 
course posted about my findings.

https://forum.juce.com/t/ms-visual-studio-16-9-4-compile-failed-after-vs-update/45555/5



